光学被动热补偿方式实现红外与可见光图像融合物镜设计

孙爱平,郭 亮,杨绍明,龚杨云,浦恩昌,雷旭峰,李泽民,汪陈跃 (北方夜视科技研究院集团有限公司,云南 昆明 650223)

摘要:图像融合的配准精度是关系到图像融合质量的一个重要性能指标。本文所述的红外与可见光图 像融合物镜系统采取平行光路布局、光学被动热补偿的方式提高图像融合的配准精度。本文首先分析 对比了机械热补偿方式与光学热补偿方式对提高图像配准精度的贡献;其次根据图像融合物镜系统的 性能指标对红外物镜和可见光物镜进行光学被动热补偿的优化设计,并分析了对可见光物镜进行光学 被动热补偿设计的必要性;第三从光学布局型式及畸变变化来分析图像融合物镜系统的图像配准精 度;最后根据图像融合物镜系统的成像质量和图像配准效果,可得出融合图像质量好、能满足指标要 求的结论。

关键词:可见光物镜;红外物镜;图像融合;图像配准 中图分类号:TN216,TN223 文献标识码:A 文章编号:1001-8891(2020)11-1028-09

Design of Objective Lens for Infrared and Visible Image Fusion by Optical Passive Thermal Compensation

SUN Aiping, GUO Liang, YANG Shaoming, GONG Yangyun, PU Enchang, LEI Xufeng, LI Zemin, WANG Chenyue (North Night Vision Science & Technology Research Institute Group Co., Ltd, Kunming 650223, China)

Abstract: The registration accuracy of image fusion is an important performance index that is related to the quality of image fusion. The infrared and visible image fusion objective optical system in this study adopts a parallel optical path layout and an optical passive thermal compensation method to improve the registration accuracy of image fusion. First, the contributions of mechanical thermal compensation and optical thermal compensation are analyzed and compared to improve the image registration accuracy. Second, according to the performance index of the image fusion objective system, the optical passive thermal compensation designs of the infrared objective and visible objective are optimized. Moreover, the necessity of optical passive thermal compensation design of the visible objective is analyzed. Finally, according to the imaging quality and image registration effect of the image fusion objective system, it is concluded that the quality of the fused image is high and that the requirements of the index can be achieved.

Key words: visible lens, infrared lens, image fusion, image registration

0 引言

随着复杂战场环境中目标的伪装和隐身能力的 不断增强,如何快速准确侦查到敌方目标显得尤其重 要^[1-2]。战场光电设备常用的波段为可见光、微光、近 红外、中波红外和长波红外等几个波段。根据单一波 段光电设备特有的成像机制,发展出对应的对抗措 施,依此减小目标被探测到的几率。因此对两个或两 个以上使用不同波段的光电设备进行图像融合处理, 融合后的图像相应地具有识别一定伪装的能力,提高 探测目标的概率。

图像融合是指将同一目标场景的两幅或多幅图 像按特定的准则进行融合,使合成后的单幅图像包含 更全面的信息^[3]。红外与可见光图像融合是当前图像 融合研究的热点之一,被广泛应用于军事、航空、安 防监控等领域^[4]。红外图像依赖于目标与环境的温度 差,不受外界光照度的影响,故红外图像对比度较高, 但不能突显所观察场景中的细节信息;可见光图像具 有较强的细节信息表现能力,但易受外界光照度的影 响,光照度较差时目标难以分辨,因此红外与可见光

收稿日期: 2019-12-19;修订日期: 2020-09-07.

作者简介:孙爱平(1980-),男,硕士,高级工程师,研究方向:红外整机系统设计及光学系统设计。E-mail: 50973525@qq.com。

图像融合具有十分重要的意义[5-6]。

孙爱平等对共光路与平行光路两种图像融合光 学布局型式的优劣做出相关论述,受工艺条件的限 制,现在大部分图像融合光学装置为平行光路布局^[7]。 为了补偿温度变化带来的焦面位移,平行光路布局的 红外与可见光图像融合光学系统可采用机械热补偿 和光学被动热补偿两种方式,其中光学被动热补偿的 图像融合光学系统具有更好的图像配准精度。据此本 文采用平行光路布局型式,光学被动热补偿的设计型 式设计了一款红外和可见光图像融合物镜,并对图像 配准精度展开相应分析。

1 图像融合光学系统热补偿方式的比较

光学元件的尺寸、折射率和镜筒的尺寸随温度的 变化而变化,引起像面位移造成成像模糊。为了补偿 温度变化所引起的像面位移可采用机械热补偿方式 和光学被动热补偿方式,其中机械热补偿方式可分为 外调焦热补偿方式和内调焦热补偿方式,如图1所示。

外调焦热补偿方式即镜头组整组前后移动,改变 镜头与探测器靶面的间隔实现热补偿。对于红外与可 见光图像融合光学系统,受加工、装配精度的影响, 红外镜头和可见光镜头整组前后移动的过程中,二者 的光轴发生漂移,造成图像配准精度的降低。

内调焦热补偿方式即镜头组其中一件光学元件 或者一组光学元件作为补偿组沿光轴前后移动,在环 境温度变化时实现像面与探测器靶面的重合。由于其 中一件光学元件或者一组光学元件沿光轴前后移动, 改变了原来的光学成像关系,使镜头组的焦距发生改 变即放大倍率改变,造成目标所成图像的大小不一 致,进而降低图像配准精度;受加工、装配精度的影 响,补偿组沿轴向移动,二者光轴发生漂移,造成图 像配准精度的降低。

光学被动热补偿方式即镜头组选择合适的光学 材料、镜筒材料及面型类型,在不移动任何光学元件 的条件下,实现环境温度变化时像面与探测器靶面的 重合。随着工作温度的变化,镜头组采取光学被动热 补偿方式时其放大倍率一致并且无活动的光学元件, 光轴相对位置基本无变化,图像配准精度很高。

红外与可见光图像融合光学系统采取光学被动 热补偿方式比机械热补偿方式具有更高的图像配准 精度,故本文采取光学被动热补偿方式开展红外与可 见光图像融合物镜的设计。

2 融合物镜设计分析

2.1 设计指标

可见光物镜选用 800×600、18 μm 的低照度 CMOS,设计波段为 0.6 μm~0.95 μm,此波段相对于 可见光常用的 0.48 μm~0.65 μm 彩色波段,具有一定 的透雾功能,配合透雾算法可提高可见光物镜观察场 景的细节能力。图像融合系统光学设计参数见表 1。

2.2 红外物镜光学被动热补偿设计

红外物镜采取四片式设计型式,光学布局型式见 图 2。红外物镜光学透镜材料选择 Ge 和 IRG206,镜 筒材料选择铝合金,面型选择常用的球面、非球面和 二元衍射面,其中二元衍射面放置在第二透镜的后表 面上。通过以上措施实现在环境温度变化时红外物镜 的像面与红外机芯的靶面相重合,在工作温度范围内 成像清晰。

红外物镜在低温(-40℃)、常温(20℃)和高 温(60℃)条件下的点列图及传递函数曲线如图3所 示。红外物镜的传递函数(MTF)在奈奎斯特频率(30 lp/mm)处除边缘视场外对比度均在0.4以上,中心视 场区域的对比度接近衍射极限;依据点列图所示,0.7 视场内的能量均在一个像素内,其余视场约有80%的 能量在一个像素内。综上所述红外物镜在工作温度范 围内像差校正效果较好。

Table 1	Optical design	parameters of	image	fusion sy	stem
---------	----------------	---------------	-------	-----------	------

	Focal length	38.7 mm
	Field	16°×12°
lana	F/#	1.1
lens	Wavelength	8 μm-12 μm
	Detector type	UFPA 640 \times 480, 17 μ m
	Focal length	51.22 mm
V :-:h1-	Field	16°×12°
VISIDIE	F/#	1.5
lens	Wavelength	$0.6\mu m{\sim}0.95\mu m$
	Detector type	CMOS 800×600, 18 μm
Eusion	Pagistration acouracy	One pixel (0.017 mm)
Fusion	Distance temperature	45.5 m-∞
iens	Distance temperature	−40°C-60°C

2.3 可见光物镜光学被动热补偿设计

可见光物镜采用类高斯的设计形式,如图4所示。 可见光物镜的光学透镜选用成都光明生产的环保材料,面型均为球面,镜筒材料选择铝合金。通过优化 选择球面半径和透镜材料实现在工作温度范围内可 见光物镜的像面与 CMOS (Complementary Metal-Oxide Semiconductor) 靶面相重合,成像清晰。 可见光物镜在低温(-40℃)、常温(20℃)和 高温(60℃)条件下的点列图及传递函数曲线如图 5 所示。可见光物镜的 MTF(Modulation Transfer Function)在奈奎斯特频率(28 lp/mm)处除边缘视场 外对比度均在 0.6 以上;依据点列图所示,所有视场 约有 80%的能量在一个像素内。综上所述可见光物镜 在工作温度范围内像差校正效果较好。

(b) 20°C

图 3 红外物镜的 MTF 曲线和点列图

图 4 可见光物镜光学布局

Fig.4 Optical layout of visible objective lens

CHOS-13.ZHX CONFIGURATION 1 OF 3 (b) 20°C 8.328 16.175 9.765 55.248

CHOS-13.ZHX CONFIGURATION 1 OF 3

Fig.5 MTF curve and point plot of visible objective lens

2.4 可见光物镜进行光学被动热补偿的必要性分析

可见光物镜在大部分场合使用机械热补偿方式, 很少见到光学被动热补偿的镜头。对于图像融合光学 系统,为了提高图像配准的精度,不仅红外物镜需要 进行光学被动热补偿设计,可见光物镜也需要进行光 学被动热补偿设计。

以一种天塞型变形型式的照相物镜为例,分析在 图像融合光学系统中进行光学被动热补偿设计的必 要性。此天塞型照相物镜的焦距为 44.8 mm,F 数为 3.5,工作波段为 0.48 µm~0.65 µm,成像器件为 1/3 英寸的 CCD (WAT-600CX,像元大小 6.5 µm×6.25 µm),光学透镜材料为成都光明环保材料,面型均为 球面,镜筒材料为铝合金,设计布局型式见图 6,各 个温度点的传递函数曲线见图 7。由图 7 可知此照相 物镜在常温工作环境下 MTF 曲线在奈奎斯特频率处 (80 lp/mm)对比度在 0.6 以上,在低温和高温工作环 境下,MTF 性能严重下降。在常温工作环境中,如果 此照相物镜的性能使用到奈奎斯特频率或者接近此 频率点时,在低温和高温工作环境中,照相物镜具有 不能达到常温性能指标的缺陷。

据以上分析, 红外与可见光图像融合光学系统中

的可见光物镜采用光学被动热补偿设计非常必要,同时对于定焦使用的可见光或者微光物镜,如果工作环境温度变化较大,也需要进行光学被动热补偿设计。

3 图像配准精度的分析

3.1 引起图像配准精度降低的因素

图像配准精度的高低是决定图像融合效果的一 个重要因素,因此图像配准精度是设计图像融合光学 系统的一个与图像质量同等重要的设计指标。对于平 行光路布局、红外与可见光图像融合光学系统,从理 论上分析影响图像配准精度的因素有以下两个方面:

一是平行光路布局引起的图像配准精度的降低。 由于红外物镜与可见光物镜的光轴平行但不重合,二 者之间具有一定的间隔,造成随着观察距离的远近不 同,配准精度也随之变化。

二是红外物镜与可见光物镜的畸变造成图像配 准精度的降低。在图像融合光学系统中红外物镜与可 见光物镜的畸变是需要关联的,为了提高图像配准的 精度,红外物镜与可见光物镜的畸变在相同视场点需 要具有相同的畸变值,依此来消除畸变带来的图像配 准误差。

图 6 照相物镜光学布局 Fig.6 Optical layout of photographic objective lens

Fig.7 MTF curves of photographic objective lens

3.2 平行光路布局图像配准精度分析

红外和可见光图像融合物镜采取平行光路布局 型式,由于二者的光轴具有一定的间隔,因此同一个 目标分别经过红外物镜和可见光物镜成像后成像于 各自的探测器上,像点距离各自探测器中心的间隔随 观察距离的变化而变化,造成图像配准精度的降低。

为了简化分析,假设目标 A 在可见光物镜的光轴 上,距离可见光物镜间隔为 L,则经过可见光物镜成 像于 CMOS 靶面的中心 A_{CMOS}。目标 A 与红外物镜的 光轴间隔为 d,经红外物镜成像于红外机芯的 A_{IR} 处, A_{IR}距离红外机芯的间隔为Δd,如图 8 所示。此Δd 为 平行光路布局带来的图像配准误差:

$$\frac{d}{L} = \frac{\Delta d}{f_{\rm IR}}$$

红外物镜与可见光物镜光轴间距为 0.02 m,则对 应不同距离的图像配准精度如表 2 所示。由表 2 可知 此图像融合光学系统在 45.5 mm~无穷远的观察范围 内,图像配准精度在一个像素内,并且所观察的目标 越远,图像配准精度越高。在图像配准误差大于一个 像素的观察范围内,可以采取单通道观察如红外通道 或者可见光通道。

3.3 畸变影响图像配准精度分析

红外图像和可见光图像在同一个监视器上显示 时,由于受畸变的影响,实际目标图像与理论目标图 像具有一定的错位,造成图像配准精度的降低,因此 在进行红外物镜和可见光物镜设计时需要对其畸变 大小进行控制,使其畸变大小相一致。

红外物镜和可见光物镜在进行像质优化时,由于 是光学被动热补偿系统,只需控制常温下的畸变值相 一致,其余工作温度下畸变值相对常温下的畸变值变 化非常小,即红外物镜和可见光物镜在其余工作温度 下畸变值大小也一致,畸变变化情况见表 3 和图 9。 由表 3 和图 9 可知,以常温 20℃的工作条件分析畸变 带来图像配准的误差即可。

假定红外图像和可见光图像都在同一个微型 OLED上显示(800×600、15μm),以对角线一半长 度做为像方理论像高进行分析。图像处理不会对红外 图像和可见光图像产生畸变,则在进行图像融合时各 个视场点图像配准的误差见表4所示。由表4可知, 红外图像与可见光图像的畸变带来的配准精度误差 不超过1μm,即在进行像质优化设计过程中通过控制 红外物镜和可见光物镜的畸变值,可以基本消除畸变 带来的图像配准误差。

表 2 随距离变化的图像配准精度

 Table 2
 Image registration accuracy with distance

		0 0	~
<i>L</i> /m	$\Delta d/\mathrm{mm}$	Pixel	Notes
30	0.026	1.5	
40	0.019	1.1	
45.5	0.017	1	the size of each pixel is 0.017 mm
50	0.015	0.88	
60	0.013	0.76	

田衣4 可和,

表 3 红外物镜与可见光物镜的畸变 Table 3 Distortion of infrared objective lens and visible objective lens

(b) −40°C

(c) 60℃ 图 9 红外物镜和可见光物镜的场曲与畸变曲线

Fig.9 Field curve and distortion curve of infrared objective lens and visible objective lens

表 4 红外物镜和可见光物镜的图像配准误差

...

	visible objective lens				
	Theoretical	Infrared	Visible		
	image	image	image	Error/mm	
	height /mm	height /mm	height /mm		
0.5 <i>w</i>	3.75	3.72680	3.72710	0.00030	
0.707ω	5.3025	5.23626	5.23597	0.00029	
0.85 <i>w</i>	6.375	6.25832	6.25778	0.00054	
100	7.5	7.30528	7.30590	0.00062	

件公差, 焦面位移作为补偿(补偿量±0.5 mm), 以 平均概率分布方式分配实际装配及加工时的公差值, 并采用蒙特卡罗分析方法模拟 50 套加工装配后的虚 拟镜头,分析虚拟镜头的 MTF 变化,依此判断实际 镜头的成像效果。

表7的蒙特卡罗分析结果表明90%的红外镜头在 奈奎斯特频率处 MTF 值不小于 0.135 的; 表 8 的蒙特 卡罗分析结果表明 90%的可见光镜头在奈奎斯特频 率处 MTF 值不小于 0.301 的。常规的加工及装配工艺 均能满足表 5、表 6 的公差要求,公差分配合理且整 个镜头的成像质量较好。

4 公差分析

红外物镜和可见光物镜分别按表 5、表 6 分配零

Table 5Tolerance table of infrared objective lens parts				
Parameter	Tolerance	Parameter	Tolerance	
N	± 3 aperture	Surface tilt	$\pm 1'$	
ΔN	± 0.7 aperture	Air distance	$\pm 0.02\text{mm}$	
Aspheric error	$\pm 0.00007\mathrm{mm}$	Element tilt	4.5′	
Thickness of optical parts	$\pm 0.02\mathrm{mm}$	Element eccentricity	$0.052\mathrm{mm}$	
Focal plane displacement compensation	$\pm 0.5\mathrm{mm}$	-	-	

Table 6	Tolerance table of	visible objective	lens parts
		5	1

Parameter	Tolerance	Parameter	Tolerance
N	\pm 4aperture	Surface tilt	$\pm 6'$
ΔN	± 0.6 aperture	Element tilt	$\pm 6'$
Thickness of optical part	$\pm 0.03\text{mm}$	Element eccentricity	$\pm 0.052\text{mm}$
Air distance	$\pm 0.05\text{mm}$	n _d	± 0.001
Focal plane displacement compensation	$\pm 0.5\mathrm{mm}$	v _d	$\pm 1\%$

Table 7	Tolerance	analysis	results of	f infrared	objective lens

Lens percentage /%	MTF minimum (Nyquist frequency)
90	0.135
80	0.158
50	0.196
20	0.248
10	0.275

表 8	可见光物镜公差分析结果

 Table 8
 Tolerance analysis results of infrared lens visible objective lens

Lens percentage /%	MTF minimum (Nyquist frequency)
90	0.301
80	0.351
50	0.455
20	0.531
10	0.597

5 结论

本文介绍了平行光路布局、光学被动热补偿方式 实现红外与可见光图像融合物镜的设计理论和方法。 通过对产生图像配准误差因素的分析,采取相应的措 施减小或消除图像配准的误差,说明红外物镜和可见 光物镜采取光学被动热补偿方式的设计方案能够提 高图像配准的精度,改善图像融合效果。通过采取光 学被动热补偿方式进行红外与可见光图像融合物镜 的设计,为其它进行图像融合研究的相关人员提供参 考。

参考文献:

安福,杨风暴,李伟伟,等.基于 DWT 的红外偏振与光强图像的融合
 [J].光电技术应用,2013,28(2):18-23.

AN Fu, YANG Fengbao, LI Weiwei, et al. Fusion of Infrared Polarization and Intensity Images Based on DWT[J]. *Electro-optic Technology Application*, 2013, **28**(2): 18-23.

[2] 曾朝阳,程相正,陈杭,等.基于改进 SURF 算子的高低分辨率图像配 准方法[J]. 激光与红外, 2014, 44(2): 207-212.

ZENG Zhaoyang, CHENG Xiaozheng, CHEN Hang, et al. Registrantion method of high-low resolution images based on improved SURF[J]. *Laser & Infrared*, 2014, **44**(2): 207-212.

[3] 郭李华. 基于金字塔和 HIS 变换的图像融合研究[J]. 微计算机应用,2010, 31(11): 67-72.

GUO Lihua. Research of Image Fusion Based on Laplacian-Pyramid and HIS-Transform[J]. *Microcomputer Applications*, 2010, **31**(11): 67-72.

[4] 韩泽, 蔺素珍, 赵竞超, 等. 基于直觉模糊集的多波段图像融合[J]. 红
 外技术, 2018, 40(3): 253-258.

HAN Ze, LIN Suzhen, ZHAO Jingchao, et al. Multi-band Image Fusion Based on Intuitionistic Fuzzy Set Theory[J]. *Infrared Technology*, 2018, **40**(3): 253-258.

[5] 李博博, 马泳, 张晓晔, 等. 基于 BMA 滤波器和边缘的红外与可见光 图像融合[J]. 红外技术, 2018, 40(2): 139-145.

LI Bobo, MA Yong, ZHANG Xiaoye, et al. Infrared and Visible Image Fusion Based on BMA Filter and Edge[J]. *Infrared Technology*, 2018, **40**(2): 139-145.

- [6] 张俊举,常本康,张宝辉,等.远距离红外与微光/可见光融合成像系统[J]. 红外与激光工程, 2012, 41(1): 20-24. ZHANG Junju, CHANG Benkang, ZHANG Baohui, et al. Long-distance image fusion system for infrared and LLL/visible bands[J]. Infrared and Laser Engineering, 2012, 41(1): 20-24.
- [7] 孙爱平, 龚杨云, 朱尤攀, 等. 微光与红外图像融合手持观察镜光学系统设计[J]. 红外技术, 2013, 35(11): 712-717.
 SUN Aiping, GONG Yangyun, ZHU Youpan, et al. Optical System Design of Low-light-level and Infrared Image Fusion Hand-held Viewer[J]. Infrared Technology, 2013, 35(11): 712-717.